
Averaging, Grids and
Interpolation

Averaging

• There are many ways…
– Simple user-defined averages
– Averaging functions in MA(.average)
– Averaging functions in cdutil(.averager)

• This session presents some details on:
– Averaging over axes
– Weighted averaging

Simple user-defined averaging

• You can create your own simple averages using
arrays, slabs or variables in the usual way:
– Averaging over 4 time steps:

>>> t.shape
(4, 181, 360)
>>> av=(t[0]+t[1]+t[2]+t[3])/4

• Drawbacks:
– Doesn’t retain your metadata.
– Cannot average simply across axes within a variable.

MA Averaging
• The MA module has an averaging

function:
MA.average(x, axis=0, weights=None,
returned=0)

– computes the average value of the non-masked elements of
x along the selected axis. If weights is given, it must match
the size and shape of x, and the value returned is:

– elements corresponding to those masked in x or weights are
ignored. If returned, a 2-tuple consisting of the average and
the sum of the weights is returned.

MA Averaging: example
• To calculate a set of zonal means:

>>> import MA
>>> # data is some array
>>> arr=MA.array(data)
>>> print arr.shape
(1,181,360)
>>> zm=MA.average(arr, axis=2)
>>> print zm.shape
(1,181)

The cdutil “averager” function

• The “cdutil.averager()” function is the key to spatial
and temporal averaging in CDAT.

• Masks are dealt with implicitly.
• Powerful area averaging function.
• Provides control over the order of operations (i.e.

which dimensions are averaged over first).
• Allows weightings for the different axes:

– pass your own array of weights for each dimension, use the
default (grid) weights or specify equal weighting.

Usage of cdutil.averager

result = averager(V, axis=axisoptions,
weights=weightoptions,
action=actionoptions,
returned=returnedoptions,
combinewts=combinewtsoptions)

axisoptions has to be a string. You can pass axis='tyx', or '123', or 'x
(plev)’.

weightoptions is one of 'generate’ | ‘weighted’ | 'equal' |
‘unweighted’ | array | Masked Variable

actionoptions is 'average' | 'sum‘ [Default = 'average‘].
You can either return the weighted average or the weighted sum of

the data.

weightoptions: ‘generate’ or ‘weighted’ option

• Weights are generated using the bounds for the
specified axis.

• For latitude and longitude, the weights are calculated
using the area (see grid.getWeights()).

• For other axes weights are the difference between
the bounds (when the bounds are available).

• If the bounds are stored in the file being read in, then
those values are used. Otherwise, bounds are
generated as long as cdms.setAutoBounds('on') is
set (the default setting).

• If cdms.setAutoBounds(‘off’) is set then an Error is
raised.

cdutil.averager – basic usage (1)

>>> import cdms, cdutil
>>> f=cdms.open(‘myvars.xml’)
>>> var=f(‘no10u’, time=slice(0,10))
>>> print var
no10u
array(array(10,181,360), type=f, has 651600

elements)
>>> lon_average=cdutil.averager(var, axis=“x”)
>>> lon_average.shape

(10, 181)
>>> time_average=av(var, axis=“t”)
>>> time_average.shape
(181, 360)

cdutil.averager – Weights

• Use auto generated weights based on bounds for area averaging:
>>> av=cdutil.averager
>>> area_av=av(var, axis=“yx”, \

weights=[“generate”, “generate”])

>> area_av.shape
(10,)
>>> all_av=av(var, axis=“tyx”, \

weights=[“generate”, “generate”, “generate”])
>>> all_av.shape
()

• You can use the “area_weights” function to generate a set of
weights before averaging.
>>> gen_weights = cdutil.area_weights(x)

Temporal averaging

• Averaging over time is a special problem in
climate data analysis.

• cdutil makes the extraction of time averages
and climatologies simple.

• Functions for annual, seasonal and monthly
averages and climatologies

• User-defined seasons (such as “FMA”).
• Dealt with in detail in the climate-specific tools

session.

Grids in CDAT

• Why grids?
• The CDMS RectGrid class
• Regridding (interpolation)
• Horizontal regridding
• Vertical regridding
• SCRIP – regridding Generic grids

Why grids?

• Horizontal grid is very common domain description
for a measured/modelled phenomenon.

• A HorizontalGrid represents a latitude-longitude
coordinate system. In addition, it optionally describes
how lat-lon space is partitioned into cells. Specifically,
a HorizontalGrid:
– consists of a latitude and longitude coordinate axis.
– may have associated boundary arrays (bounds) describing

the grid cell boundaries.
– may optionally have an associated logical mask.

The CDMS RectGrid class and its operations.

• CDMS includes support for grids, commonly we
encounter RectGrids.

• Reading a grid from a variable:
>>> grd=var.getGrid()
>>> lat=grd.getLatitude()

• Creating a RectGrid:
cdms.createRectGrid(lat, lon, order,

type="generic", mask=None)

• For example:
>>> lat=cdms.createAxis([1,2,3])
>>> lat.designateLatitude()
>>> lon=cdms.createAxis([0,2,4])
>>> lon.designateLongitude()
>>> grd=cdms.createRectGrid(lat, lon)

More useful grid operations
• Support for Gaussian grids:

>>> cdms.createGaussianGrid(nlats, xorigin=0.0,
order=”yx”)

– Creates a Gaussian grid, with shape (nlats, 2*nlats).
– nlats is the number of latitudes.
– xorigin is the origin of the longitude axis.
– order is either “yx” (lat-lon, default) or “xy” (lon-lat)

• Support for diagnostic grids:
>>> createZonalGrid(grid)

– Creates a zonal grid. The output grid has the same latitude
as the input grid, and a single longitude. This may be used to
calculate zonal averages via a regridding operation. grid is a
RectGrid.

>>> createGlobalMeanGrid(grid)

– Generate a grid for calculating the global mean via a
regridding operation. The return grid is a single zone covering
the range of the input grid. grid is a RectGrid.

Support for other grid types

RectGrid - Associated latitude and longitude are
1-D axes, with strictly monotonic values.

CurveGrid - Latitude and longitude are 2-D
coordinate axes (Axis2D).

GenericGrid - Latitude and longitude are 1-D
auxiliary coordinate axes (AuxAxis1D)

Curvilinear and Generic Grids

Interpolation (re-gridding)

T regrid variable u (from a rectangular grid) to a 96 x 192
rectangular Gaussian grid:

>>> import cdms
>>> f=cdms.open(‘mydata.nc’)
>>> var = f(’temp’)
>>> var.shape
(3, 72, 144)
>>> n48_grid = cdms.createGaussianGrid(96)
>>> var48 = var.regrid(n48_grid)
>>> var48.shape
(3, 96, 192)

#!/usr/local/cdat/bin/python
import cdms
from regrid import Regridder
f = cdms.open('temp.nc')
t= f.variables['t']
ingrid = t.getGrid()
outgrid = cdms.createUniformGrid(-90.0, 46,

4.0, 0.0, 72, 5.0)
regridFunc = Regridder(ingrid, outgrid)
newt = regridFunc(t)
import vcs
vcs.init().plot(t)
vcs.init().plot(newt)

Using createUniformGrid()

Using the Regridder class

• If you are going to use a regridding function
repeatedly it is more efficient to create your own
regridding function using the Regridder class:

>>> import cdms, regrid
>>> f=cdms.open(‘myfilio.nc’)
>>> var1=f(‘surface_temperature’)
>>> var2=f(‘no2t’)
>>> grid1=var1.getGrid()
>>> grid2=var2.getGrid()
>>> regridFunc=regrid.Regridder(grid1, grid2)
>>> regriddedVar1=regridFunc(var1)
>>> diff=regriddedVar1-var2 # gives difference

Vertical regridding

• You can regrid pressure-level coordinates in the
vertical axis using the pressureRegrid() method.

• You need to define, or use an existing, vertical axis.

• Then use the pressureRegrid method on the variable
you wish to regrid, passing it the new level as the
argument:

• If var is the variable to regrid and the newlevs is
the vertical axis to regrid to:

>>> var_on_new_levels = var.pressureRegrid(levout)

>>> import MV, cdms
>>> f=cdms.open('temp.ctl')
>>> t=f('t')
>>> t.getLevel()[:]
[1000., 925., 850., 775., 700., 600., 500.,
400., 300., 250., 200., 150., 100., 70.,
50., 30., 20., 10., 7., 5., 3.,
2., 1.,]
>>> t.shape
(1, 23, 181, 360)
>>> nl=cdms.createAxis(MV.array([976.0, 831.0,
221.0]))
>>> nl.designateLevel()
>>> t_regridded=t.pressureRegrid(nl)
>>> t_regridded.shape
(1, 3, 181, 360)
>>> t_regridded.getLevel()[:]
[976., 831., 221.,]

Vertical regridding: an example

SCRIP – regridding irregular grids (1)

• CDAT now supports irregular grids that can be
interpolated using the SCRIP (Spherical Coordinate
Re-mapping and Interpolation Package) package (not
provided with CDAT) as follows:

– Obtain or generate the source and target grids in SCRIP
NetCDF format. Write a CDMS grid using the
writeScripGrid() method.

– Edit the input name list file scrip_in to reference the grids
and select the method of interpolation, either conservative,
bilinear, bicubic, or distanceweighted.

– See the SCRIP documentation for detailed instructions:
http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

SCRIP – regridding irregular grids (2)

• At the command line, the SCRIP executable generates a
re-mapping file containing the transformation coefficients.

• In CDMS, open the re-mapping file and create a
regridder function with the readRegridder() method.

• Call the regridder function on the input variable, defined
on the source grid.

	Averaging, Grids and Interpolation
	Averaging
	Simple user-defined averaging
	MA Averaging
	MA Averaging: example
	The cdutil “averager” function
	Usage of cdutil.averager
	weightoptions: ‘generate’ or ‘weighted’ option
	cdutil.averager – basic usage (1)
	cdutil.averager – Weights
	Temporal averaging
	Grids in CDAT
	Why grids?
	The CDMS RectGrid class and its operations.
	More useful grid operations
	Support for other grid types
	Curvilinear and Generic Grids
	Interpolation (re-gridding)
	Using createUniformGrid()
	Using the Regridder class
	Vertical regridding
	Vertical regridding: an example
	SCRIP – regridding irregular grids (1)
	SCRIP – regridding irregular grids (2)

